Options#

This page shows how individual options and volatility surfaces work on the platform.

Learn more: Example notebooks

Environment#

Setting up your environment takes three steps:

  • Import the relevant internal and external libraries

  • Configure the environment parameters

  • Initialize the environment

import sigtech.framework as sig

import datetime as dtm
import pandas as pd
import seaborn as sns

sns.set(rc={'figure.figsize': (18, 6)})
sig.config.init()

Learn more: Setting up the environment

Vanilla Options#

Overview#

To create a vanilla option on the SigTech platform, carry out the following steps:

1) Get option group#

The available option groups can be viewed in the Data Browser. To retrieve an option group, use the following syntax and insert the relevant option group name:

option_group = sig.obj.get('<Insert Relevant Option Group Name>')

2) Create option#

Retrieve the option by calling the .get_option() method on the option group object. Below is an example:

option = option_group.get_option(
    option_type='Call',
    strike=1100,
    start_date=dtm.date(2010, 4, 6),
    maturity=dtm.date(2011, 4, 6)
)

If you’re getting an option for a futures group (such as CO COMDTY OTC OPTION GROUP) the maturity date must match an expiration date of one of the futures in the group. To find a valid maturity date that is closest to a given a date, use the following method: option.available_maturity(dtm.date(2011,4,6)).

Example: Index OTC option#

An index over-the-counter (OTC) option gives you the right to buy or sell the value of an index at a specified price.

On the SigTech platform, use sig.obj.get to retrieve the option group. You can then create the option instrument.

Input:

# Get the option group
equity_option_group = sig.obj.get('SPX INDEX OTC OPTION GROUP')

# Create the option
spx_call_option = equity_option_group.get_option(
    option_type='Call',
    strike=1100,
    start_date=dtm.date(2010, 4, 6),
    maturity=dtm.date(2011, 4, 6)
)
spx_call_option

Output:

SPX 20110406 CALL 1100 604506EC INDEX <class 'sigtech.framework.instruments.options.EquityIndexOTCOption'>[4534898352]

You can also plot the valuation of each option. This is compared below to the underlying asset minus the strike.

pd.concat({
    'Spot - strike (1100)': spx_call_option.underlying_object.history() - 1100,
    'Option price': spx_call_option.history()
}, axis=1).dropna().plot();

Example: FX OTC option#

The FXOTCOptionsGroup class represents FX OTC option groups.

Use the get_group method to retrieve the option group, then create the FX OTC option:

eur_usd_group = sig.FXOTCOptionsGroup.get_group('USDEUR')

eurusd_call_option = eur_usd_group.get_option('Call', 1.3, dtm.date(2010, 4, 6),
                                              dtm.date(2011, 4, 6))

Plot the valuation:

pd.concat({
    'Spot - strike (1.3)': eurusd_call_option.underlying_object.history() - 1.3,
    'Option price': eurusd_call_option.history()
}, axis=1).dropna().plot();

Alternative way of creating options#

Options can also be created explicitly from an option class without using the option group. Some of the option classes available include:

EquityIndexOTCOption#

This class implements OTC equity index option instruments.

Input:

equity_option = sig.EquityIndexOTCOption(
    currency='USD',
    maturity_date=dtm.date(2011, 4, 6),
    option_type='Call',
    start_date=dtm.date(2010, 4, 6),
    strike=1100,
    underlying='SPX INDEX',
)
equity_option

Output:

SPX 20110406 CALL 1100 A6D17D99 INDEX <class 'sigtech.framework.instruments.options.EquityIndexOTCOption'>[5966872832]

FXOTCOption#

This class implements FX OTC option instruments. Parameters include:

  • over: The over currency of the underlying pair (e.g. USD for EURUSD)

  • under: The under currency of the underlying pair (e.g. EUR for EURUSD)

Use FXOTCOption to create the instrument:

instr = sig.FXOTCOption(
    over='USD',
    under='EUR',
    strike=1.0635,
    start_date=dtm.date(2017, 1, 6),
    maturity_date=dtm.date(2017, 4, 6),
    option_type='Call'
)

CommodityFutureOTCOption#

This class implements OTC commodity future options:

instr = sig.CommodityFutureOTCOption(
    currency='USD',
    start_date=dtm.date(2018, 8, 22),
    strike=80,
    maturity_date=dtm.date(2019, 1, 28),
    option_type='Put',
    underlying='COH19 COMDTY',
    exercise_type='American'
)

CommodityFutureOTCDigitalOption#

This class implements OTC commodity future digital options. A digital option is a type of option that lets you manually set a strike price. You receive a fixed payout when the market price of the underlying asset exceeds the strike price.

Create the instrument:

instr = sig.CommodityFutureOTCDigitalOption(
    currency='USD',
    start_date=dtm.date(2018, 7, 22),
    strike=75,
    maturity_date=dtm.date(2019, 1, 28),
    underlying='COH19 COMDTY'
)

Exotic options#

Overview#

When dealing with other options apart from vanilla options, it’s easy to modify the .get_options() method depending on use case. The available exotic options are:

  • Digital

  • Barriers (KO & KI)

  • One-touch & no-touch

Digital #

digital = eur_usd_group.get_option('Call', 1.3, dtm.date(2010, 4, 6),
                                   dtm.date(2011, 4, 6), digital=True)
pd.concat({
    'Spot - strike (1.3)': digital.underlying_object.history() - 1.3,
    'Option price': digital.history()
}, axis=1).dropna().plot(subplots=True);

Barriers: KO & KI #

ki_barrier_1 = eur_usd_group.get_option('Call', 1.3,
                                        dtm.date(2010, 4, 6), dtm.date(2011, 4, 6),
                                        barrier_type='KI', barrier=1.5)
ki_barrier_2 = eur_usd_group.get_option('Call', 1.3,
                                        dtm.date(2010, 4, 6), dtm.date(2011, 4, 6),
                                        barrier_type='KI', barrier=1.4)
pd.concat({
    'Spot - strike (1.3)': ki_barrier_1.underlying_object.history() - 1.3,
    'Option price (1.4 barr.)': ki_barrier_2.history(),
    'Option price (1.5 barr.)': ki_barrier_1.history()
}, axis=1).dropna().plot(subplots=True);

ko_barrier_1 = eur_usd_group.get_option('Call', 1.3,
                                        dtm.date(2010, 4, 6), dtm.date(2011, 4, 6),
                                        barrier_type='KO', barrier=1.5)
ko_barrier_2 = eur_usd_group.get_option('Call', 1.3,
                                        dtm.date(2010, 4, 6), dtm.date(2011, 4, 6),
                                        barrier_type='KO', barrier=1.4)
pd.concat({
    'Spot - strike (1.3)': ko_barrier_1.underlying_object.history() - 1.3,
    'Option price (1.4 barr.)': ko_barrier_2.history(),
    'Option price (1.5 barr.)': ko_barrier_1.history()
}, axis=1).dropna().plot(subplots=True);

One-touch & no-touch #

ot_barrier = eur_usd_group.get_option('Call', 1.4,
                                      dtm.date(2010, 4, 6), dtm.date(2011, 4, 6),
                                      barrier_type='OT', digital=True)
nt_barrier = eur_usd_group.get_option('Call', 1.4,
                                      dtm.date(2010, 4, 6), dtm.date(2011, 4, 6),
                                      barrier_type='NT', digital=True)
pd.concat({
    'Spot - strike (1.3)': ot_barrier.underlying_object.history() - 1.3,
    'Option price (One-touch 1.4)': ot_barrier.history(),
    'Option price (No-touch 1.4)': nt_barrier.history()
}, axis=1).dropna().plot(subplots=True);

Greeks#

The Greeks for each option can be queried in the following way:

equity_option.option_metrics().head()

The volatility can be overwritten in the Greeks calculation. This override can be specified as a float or time series of vols.

equity_option.option_metrics(
    fields=['Delta', 'ImpliedVolatility'], vol_override=0.12).head()

Vol surface #

Retrieve vol surface object #

Input:

vs = sig.obj.get('EURUSD VOLSURFACE')
vs

Output:

EURUSD VOLSURFACE <class 'sigtech.framework.infra.vol_surfaces.vol_surface.FXVolSurface'>[5572896224]
vs.plot_surface(d=vs.history_dates_actual()[-1], z_name='Vol')

get_vol based on the effective date, expiry date and strike.

Input:

vs.get_vol(dtm.date(2019, 3, 29), dtm.date(2019, 4, 28), 1.34)

Output:

0.05693914182317497

Vol surface iterator#

The FXVolSurfaceIterator class simplifies the retrieval of a set of volatility surfaces for a selection of currencies and associated data.

Input:

vol_iterator = sig.FXVolSurfaceIterator(['USD', 'EUR', 'GBP'])
list(vol_iterator.iterate_surfaces())

Output:

[EURUSD VOLSURFACE <class 'sigtech.framework.infra.vol_surfaces.vol_surface.FXVolSurface'>[5572896224],
 GBPUSD VOLSURFACE <class 'sigtech.framework.infra.vol_surfaces.vol_surface.FXVolSurface'>[5973002656],
 EURGBP VOLSURFACE <class 'sigtech.framework.infra.vol_surfaces.vol_surface.FXVolSurface'>[5981535392]]

Use the iterator class to generate a list of all available surfaces:

Input:

sig.FXVolSurfaceIterator.get_all_available_surfaces_names()[:5]

Output:

['AUDBRL VOLSURFACE',
 'AUDCAD VOLSURFACE',
 'AUDCHF VOLSURFACE',
 'AUDCNH VOLSURFACE',
 'AUDHKF VOLSURFACE']

Using the FXVolSurfaceIterator instance, you can obtain the historical implied ATM volatilities and risk reversals:

implied_1m_vol_history_df = vol_iterator.atm_vols_for_tenor('1M')
implied_1m_vol_history_df.plot(title='Historical Implied Volatilities');

rr_history_df = vol_iterator.risk_reversal('1M', 25)
rr_history_df.plot(title='Historical Risk Reversal (25 Delta)');

The available tenors can be listed with the get_all_available_tenors method:

Input:

vol_iterator.get_all_available_tenors()[:10]

Output:

['-', 'O/N', 'ON', '1W', '1WK', '2WK', '2W', '3WK', '3W', '1M']